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On the occurrence of condensations in steady 
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(Received 25 July 1962) 

In  experiments on the stability of a submerged axisymmetric jet at  Reynolds 
numbers large compared with unity, Reynolds (1963) observed axisymmetric 
‘ condensations ’ which appear to grow spontaneously, whereas Batchelor & 
Gill (1962) have shown that infinitesimal disturbances of this type do not grow 
in an inviscid fluid. Here it is shown that axisymmetric disturbances do not grow 
in a slightly viscous fluid either, and the solution for which the rate of damping 
is smallest is found. It is suggested that the growth of small but finite disturbances 
is responsible for the condensations observed. The order of magnitude of the 
disturbance velocity at  which non-linear effects could produce growth of a dis- 
turbance is found to depend on the wave-number of the disturbance. The 
smallest velocity which a ‘finite’ disturbance may have is found to be of order 
R-8, and corresponds to a disturbance whose wave-number is of order R*, 
R being the Reynolds number based on the local radius and maximum velocity 
of the jet. On the assumption that some disturbances whose velocity is of this 
order will grow, deductions are made as to the size, position, wave-number, 
and point of appearance of condensations. The deductions appear to agree with 
the experimental results. 

1. Comparison of infinitesimal theory with experiment 
The quantities used in the next two sections will be assumed to be made non- 

dimensional by choosing length and time scales so that the radius of the jet 
and the velocity of the jet a t  the centre are both unity. Only axisymmetric 
disturbances are considered. The paper by Batchelor & Gill (1962) will be 
referred to as paper I and the paper by Reynolds (1962) as paper 11. 

(i) Experiment. Condensations (see 11) are seen to appear, apparently spon- 
taneously, over a range of Reynolds numbers R of about 50 to 250, while the 
(non-dimensional) wave-number a is round about 5 for all these Reynolds 
numbers. Thus both R and aR are large, and the conditions (I, 3 1) required for the 
validity of parallel flow theory are satisfied. The condensations appear at  the 
centre of the jet, and their radius appears to be small compared with the width 
ro of the jet, as calculated by equation (1.9) of I. 

(ii) Theory. It is shown in I that, in inviscid fluid, infinitesimal (axisymmetric) 
disturbances do not grow ($4), and that the rate of damping is non-zero, except 
possibly when the wave-speed of the disturbance is equal to the velocity of the 
jet at the centre (95). It is also shown that if such neutral solutions exist, they 
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have a singularity at the centre (except for the trivial case of zero wave-number). 
Thus, in the limit of vanishing viscosity, the amplification rate tends to a non- 
zero negative value except possibly for disturbances whose wave-speed is unity. 
This raises two questions. First, do neutral inviscid solutions exist a t  all? And 
secondly, if they do exist, does the amplification rate tend to zero through positive 
values (as it does for disturbances to the boundary layer on a flat plate) or through 
negative values? In  the absence of rigid boundaries, it  seems almost certain 
that viscosity will have a stabilizing effect. This is confirmed in the next section, 
where it is shown that solutions neutral in the inviscid limit do exist and that 
they are stable. Their form and rate of damping are found explicitly. 

(iii) Comparison. The fact that condensations appear at all disagrees with the 
predictions of the infinitesimal theory, so presumably the appearance of these 
condensations is due to the growth of small, but finite, disturbances. Now if 
small finite disturbances of a certain wave-number grow, one would expect that 
infinitesimal disturbances of the same wave-number are only weakly damped. 
This points to the importance of solutions which are neutral in the limit of 
vanishing viscosity. The next section is devoted to finding these solutions. 

2. Solutions neutral in the inviscid limit 
The full governing equation 

The equation is most readily handled in terms of the Stokes stream function Y 
such that the axial and radial components (a, v) of the velocity are given by 

1 ay 1 ay 
r a r ’  a x ,  v = u = -- 

where (2, r,  4) are cylindrical polar co-ordinates. The 
vorticity is then 

(2.1) 

azimuthal component of 

(2.2) 

and the Navier-Stokes equation has the non-dimensional form 

(2.3) 

Here R is the Reynolds number based on the radius and maximum velocity of the 
jet. The primary flow is in the axial direction with velocity U(r), so has stream 
function Y = JrU(r)dr  and azimuthal vorticity component rZ = -dU/dr.  
Following the usual practice (I, 4.16 with n = 0) ,  we consider a disturbance whose 
stream function has the form 

9{ #(r)  eiab-ct)}. (2.4) 

The disturbance azimuthal vorticity is therefore %{r<(r) eia(z+t)}, where, by (2.3), 

the prime denoting differentiation with respect to r .  The linearized equation 
corresponding to infinitesimal disturbances is obtained in the usual way by 
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substituting the total stream function, = SrUdr + g { $ ( r )  eia(z-d)}, in the 
Navier-Stokes equation (2.3), and neglecting squares of $. It therefore has the 
form 

(2.6) that is 

In  terms of the single dependent variable, $, this equation is, by (2.5), the 
fourth-order equation (cf. Sex1 1927) 

The boundary conditions, as in paper I, are 

03, i.e. 
(a )  that the disturbance velocity components u and v vanish as r approaches 

and ( b )  the regularity conditions that u is finite and v zero at r = 0, i.e. 

Iffinite, r r  and &= r 0 a t  r = 0. (2.9) 

Singular solutions of the inviscid equation 
The inviscid equation is obtained by formally putting l/mR equal to zero in 
(2.7) and is the same as the governing equation (I, 2.16 with n = 0; q5 = -rG by 
(2.4) above and I ,  4.16) of paper I. Note, however, that when the wave speed c 
is the same as the velocity U ( 0 )  at the centre of the jet, the left-hand side of 
(2.7) vanishes, and the deduction of the inviscid equation as a limit of the full 
equation (2.7) is no longer valid. In  $ 5  of paper I it was shown that when the 
wave-speed is equal to U ( 0 ) ,  the inviscid equation does not in general have a 
solution satisfying both (2.8) and (2.9), so that the only solutions which can exist 
are singular at r = 0. The radial velocity of the disturbance was shown in the 
same section to behave like l /r  near r = 0, so that the function q4, by (2.1) and 
(2.4) tends to  a non-zero value as r tends to zero. The boundary condition (2.9), 
however, requires that q5 be zero a t  r = 0, so that $ must have a discontinuity at  
r = 0. 

In  particular, for the velocity profile 

U = (1 +r2)-2 

appropriate to the experimental jet (see I ,  6. l ) ,  and the wave-speed equal to 
U(O), that is c = 1, the inviscid equation is 
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When the wave-number a is large, the last term on the left-hand side of (2.10) 
can be neglected, and the approximate solution which vanishes as r tends to 
infinity is q5 = {;K,(ar) for r > 0 

for r = 0 
(2.11) 

It now remains to be shown that such a singular solution does represent a dis- 
turbance in a viscous fluid in the limit of vanishing viscosity. When the viscosity 
is small but non-zero, the singular line r = 0 on which q5 is discontinuous is 
replaced by a narrow region near the centre of the jet over which q5 changes 
rapidly. This 'critical layer' shrinks to the line r = 0 when aR tends to infinity. 
The problem is to find under what conditions q5 can change in the critical layer 
in such a way as to balance the discontinuity in the inviscid solution (2.11), so 
that the overall solution is continuous and satisfies the boundary conditions. 

Solution in the critical layer 
The method of finding the solution in the critical layer is much the same as 

the method employed for plane unidirectional flows (see, for example, Lin, 1955, 
3 3.6 and chapter 8). The layer is maintained as a balance between the diffusion 
of vorticity by viscosity (right-hand side of (2.6), of order c/aRr2) and the con- 
vection of vorticity by the primary flow, (U  - l) ,  relative to the centre of the jet 
(left-hand side of (2.6) of order r2c).  The radius of the layer is, therefore, of order 
(aR)-*. Since by (2.5) q5 is of order r45 (or smaller if a is very large), the second 
term on the left-hand side of (2.6) is small compared with the first, and so may be 
neglected. Finally, the wave speed, c, is unity to the first order as aR tends to 
infinity, but in the critical layer it is necessary to make a second-order correction. 
This correction term is vital since it determines the damping of the infinitesimal 
disturbance, and will be of the same order, (a@-*, as the velocity of the primary 
flow in the critical layer, relative to the centre of the jet. To absorb the coefficient 
i(a/R) of 6 on the right-hand side of (2.6) we define the correction term c1 thus 

R 
(2.12) 

.a 
c = l-t--(aR)-*cl.  

Substituting (2.13) in (2.6) and making these approximations for r small, we have 

(-2r2+(aR)-*cl)< = - i ( a R ) - l ( ~ + ( 3 / r ) ~ ) .  (3.13) 

We make two observations about the solution c of this equation: 
(i) 6 is an even function of r ,  so depends on r2 rather than r. 
(ii) the solution bounded as (aR)* r tends to infinity behaves, for large (ah?)* r ,  

like 6 N exp[-&(1-i)(aR)*r2]. 

This suggests the following changes of variable 

y = (1 - i )  (aR)* rz,  

6 = yexp[-&(1-i)(aR)*r2] = ye-*", 
(2.14) 

(2.15) 

which puts (2.13) in the form 

d2r d r  y-+ (2 - y) - - (1 - Q( 1 -i) cl) 7 = 0. 
dY2 dy 

(3.16) 
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The problem has now become a classical eigenvalue problem: to find the values 
of c1 such that the solution, 7, of (2.16) is regular a t  r = 0 and such that 
6 = 7 e-iu vanishes as y becomes large. The eigenvalues are given by 

$ ( l - i ) ~ 1  = N ( N  = 1 ,2 ,3  ,... ), (2.17) 

and the eigenfunctions are Laguerre polynomials (see Erdklyi, 1953, vol. 11, 

5 10.12). 
Substituting (2.17) in (2.12), 

c = 1 - ia/R - 4N(aR)-+ (1 + i), (2.18) 

so that the damping is given by 
a 

C. = ---4N(aR)-*. (2.19) ' R  
We see that the least damped mode is given by N = 1, when the eigenfunction is 
simply 7 = constant = B, say, or 

5 = B e-$u. (2.20) 

To find the corresponding stream function, q5, we rewrite (2.5) in terms of y, that 
is 

(2.21) 

which can be integrated to obtain a stream function, q5, which satisfies the 
boundary conditions. The behaviour of q5 depends on whether a/Rf is large, small 
or of order unity, as this determines which term on the left-hand side of (3.21) 
is the more important in the critical layer. For instance, if the wavelength of the 
disturbance is large compared with the radius of the critical layer (a< (aR)t, 
or a < R*) the second term on the left-hand side of (2.21)may be neglectedin the 
critical layer, so that the first approximation to q5 in the critical layer which 
satisfies the boundary condition (2.9) is of the form 

(2.22) 

D being a constant of integration. If the wavelength is a t  the same time small 
compared with the radius of the jet (i.e. a 1)  the solution outside the critical 
layer is given by the first half of the inviscid solution (2.11). The constants B 
and D can then be calculated by the usual matching procedure, i.e. by com- 
paring (2.11) and (2.22) a t  a value of r which is a t  the same time large com- 
pared with (aB)f (i.e. y large) and small compared with lla (i.e. ar small). This 
gives B = - 2ia R, D = 0 to the first order, and so 

(2.23) $4 arKl(ar) outside the critical layer. 

To the first order, the disturbance velocity is, by (2.1) and (2.4), only important 
in the critical layer, where it is in the axial direction and given by 

u = a{( 1 - i) (aR)+ exp [ - $( 1 - i) (aR)fr r2 + ia(x - t ) ] )  

1 1 - exp [ - *( 1 - i )  (aR)* r2] in the critical layer, 

= (2aR)4 exp [ - +(aR)$ r2] cos [a(z - t )  + +(aR)*r2 - 4771, 
36 Fluid Mech 14 
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that is, the disturbance velocity amplitude has a Gaussian distribution with 
maximum at the centre of the jet, and the phase of zc changes significantly across 
the layer. To calculate the disturbance velocity to a stage where it is significant 
outside the critical layer, the second term in the series 

$ = $o + (a3/R)4 $1 + (a3/R) $2 + . . . 
for the stream function in the critical layer is necessary. The calculation of 
is straightforward. 

On the other hand, if the wavelength of the disturbance is small compared 
with the radius of the critical layer (a  >> Rg) i t  is seen from (2.21) that the stream 
function in the critical layer is, to the first order, of the form 

$ - ye+ = constant x r2exp [ - i(aR)B (1 - i )  r2], 

and is exponentially small outside the layer. From (2.19), the damping is 
now dominated by the first term, -a/R, which came from the viscous term in 
the equation of motion, and increases without limit as a increases. This means 
that for very large wave-numbers, the energy exchange processes are dominated 
by the dissipation of energy by viscosity in the critical layer. 

To sum up: there exist singular solutions of the inviscid equation (2.10) which 
correspond to infinitesimal axisymmetric disturbances in a slightly viscous fluid 
(or rather for a situation in which the parameter aR is large). For large wave- 
numbers, they have the following properties: 

(i) The disturbances are localized near the centre of the jet. 
(ii) The radius of the region outside which disturbance velocities vanish is 

small compared with the radius of the jet. The ratio of these radii is (&)-a. 
(iii) The wave velocity of the disturbance is a little less than the maximum 

velocity of the jet. 
(iv) The rate of damping is small, unless the wave-number is very large. 

[By (2.19), -aci is of order unity when a is of order RB, and increases without 
limit as the wave-number increases further.] 

The condensations observed in experiments have the first two properties (as 
far as one can judge from the experimental data, the ratio of disturbance radius 
to jet radius and (&)-a are about the same value), and no measurements of the 
speed of the condensations are available for comparison with (iii). However, there 
is the important difference that the experimental disturbances seem to appear 
spontaneously, and so presumably are not damped like the infinitesimal dis- 
turbances. This leads us to consider finite disturbances similar to the infinitesimal 
disturbances found above. 

3. Finite disturbances Criterion for ‘Jiniteness ’ 
The loss of energy by infinitesimal disturbances of the kind considered in 5 2 is 
the resultant of two processes: the transfer of energy between the mean flow and 
the disturbance, and the dissipation of energy by viscosity. Both processes take 
place in the critical layer : the transfer between mean flow and disturbance since 
the Reynolds stress is zero outside the layer ($ real), and the dissipation by vis- 
cosity since the flow outside the layer is inviscid. This energy relationship will 
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be upset once the disturbance velocity in the critical layer becomes comparable 
with the primary flow velocity relative to the centre of the jet ( U  - l ) ,  for then in 
the critical layer convection of vorticity by the disturbance will be as important 
as convection by the primary flow, or, more precisely, the non-linear terms 

in (2.3), where here Z and Y refer to the disturbance, then become of the same 
order as the linear terms 

( U - 1 ) -  az and (z+Ra)Z. 
ax 3 ar2 r ar 

Thus a finite disturbance is one whose velocity in the critical layer is the same 
order, (aR)-t, as U - 1, for disturbances whose velocities are of smaller order will 
decay like infinitesimal disturbances, whereas disturbances of the same or 
greater order will not. For a disturbance to grow, then, its velocity must at least 
be of order (aR)-g. To make possible deductions about the size, position and 
wavelength of the disturbances that are most likely to grow, we postulate that 
some disturbances of just this order, (aR)-t, do grow. Notice that this order 
decreases as the wavelength decreases. 

However, when the wavelength of the disturbance becomes so short that i t  is 
small compared with the radius of the critical layer (i.e. a B R)),  disturbances 
with velocity of order (aR)-* will no longer be as significant, since in (2.3) the 
diffusion term (1/R) (a2Z/ax2), which is of order (a2/R) 2, will be more important 
than the convection term (U - 1) (aZ/ax) associated with the primary flow, the 
latter being only of order (a/R)* 2. In  fact the energy relationship appropriate 
to infinitesimal disturbances will not be changed significantly until the con- 

and 
vection terms 

in (2.3) are comparable in the critical layer with the diffusion term (1/R) (a2Z/axz), 
that is, until Y is of order (a/R) (aR)-) = dR-% and the velocity is of order 
( a / r ) Y  N aZR-% (which increases with a). Even when disturbances are of this 
order, it  seems doubtful if they would grow since convection by the primary flow 
is so dominated by viscous diffusion in the critical layer that one would expect 
dissipation of energy by viscosity to be far more important than the transfer of 
energy between the mean flow and the disturbance. Thus, for these very short 
wavelengths, ‘finite’ disturbances have velocity a t  least of order aZR-2, but it 
seems that they will decay. In  any case, ‘finite’ disturbances have their least 
order of magnitude when their wavelength is of the same order as the radius of 
the critical layer, that is when a N R f  and (aR)-i = aZR-2 = R-3, in which case 
all the terms in (2.3).are of the same order in the critical layer. According to our 
postulate, some disturbances whose velocity in the critical layer is of order 
R-3 will grow, so that the disturbances which are most likely to appear will have 
wave-number of order R* and radius of order ( l / a )  = (aR)-* = R-*. 

We now ask ourselves in what form the disturbances are most likely to appear. 
For a disturbance whose velocity is just large enough to be regarded as finite, 

i az a\r 
r ar ax 

1 ay az 
r ar ax 

36-2 
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the diffusion terms on the right-hand side of (2.3) will be of the same order as the 
non-linear terms on the left-hand side; but, as the disturbance grows, we may 
expect the non-linear terms which depend on the square of the disturbance 
velocity to become progressively more important than the diffusion terms. Since 
only a finite amount of energy is available, we cannot expect the disturbance to 
grow indefinitely, so unless some secondary instability occurs, we can expect an 
equilibrium to be reached, which will be an inviscid rotational flow, steady relative 
to the centre of the disturbance. 

Appearance of condensations at a certain point 

One of the features of the condensations observed experimentally is that they 
do not appear until a t  a distance from the nozzle which increases with the Rey- 
nolds number. Any hypothesis which explains the presence of condensations 
should give some indication as to why their appearance is delayed, and to predict 
their wavelength. It seems very likely that the reason for the delayed appearance 
of the condensations is bound up with the fact that the velocity of the centre of 
the jet decreases with distance x from the nozzle according to the formula 

VR2 u -- 
O -  8x 

(by I, 1.10), while the radius of the jet increases according to the formula 

8x 
r -- 
O-R 

(3.2) 

(by I, 1.9). Now, according to our hypothesis, the minimum velocity of the dis- 
turbance which is most likely to appear, has order of magnitude 

R-fU, = VR*I(Sx), 

and this quantity does not fall to a given value until a distance from the 
nozzle of order R6. Thus if there is a background disturbance of a given level 
throughout the fluid, condensations resulting from the growth of such disturb- 
ances cannot be expected to appear until a distance from the nozzle proportional 
to the $-power of the Reynolds number. The wavelength of the disturbance which 
appears will be of the same order as the radius of the critical layer, that is, a! will 
be of order R*, and the radius of the disturbance compared with the radius of the 
jet will be of order R-*. 

Now the observed condensations appear over a range of Reynolds numbers of 
about 50 to 250, so Rf  varies from about 4 to 6. This agrees well with the observed 
value of a and the observed ratio of jet radius to the radius of the condensations. 
Also, a curve x = constant x R6, can be fitted quite well to the experimental curve 
relating the distance x from the nozzle at  which condensations appear, to the 
Reynolds number, R. Some care must be taken here since the Reynolds number, 
R, based on the local radius and maximum velocity of the jet, may differ from the 
experimental Reynolds number, Re, which is based on the volume efflux and 
radius at the nozzle. In  fact, it is shown in paper I (I, (1.6) to (1.8)) that these 
Reynolds numbers are the same if the flow in the nozzle is uniform. Andrade & 
Tsien (1937) show that due to the contraction in the exit tube, the flow in the 
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nozzle is parabolic only for small Reynolds numbers, and is nearly uniform a t  
large Reynolds numbers. In  figure 1, the two curves 

x = bRe4 and x = b(4J3Re)t 

are drawn, where b is a constant chosen to give the best fit. The experimental 
points are taken from paper 11, and are the ones which, so the author learns from 
Dr Reynolds, mark the points where condensations first appeared. A change 
from parabolic to uniform nozzle flow over the range of Reynolds number 
suggested in the figure is not inconsistent with a rough estimate (4 in.) of the 
nozzle length supplied by the experimenter. 

50 100 150 200 250 
Re 

FIGURE 1. Variation of the length of undisturbed jet z with Reynolds number Re based 
on volume efflux and radius of the nozzle. The solid lines are theoretical curves and the 
experimental points are from Reynolds (1962). 

The above explanation assumes the presence of background disturbances 
throughout the fluid, perhaps produced by vibration of the vessel. On the other 
hand, one might expect disturbances produced at or near the nozzle to play an 
important part. Such a disturbance would be convected downstream as a dis- 
turbance of a fixed frequency, p, so its wave-number airo = p/U0 would vary with 
distance downstream according to the formula 

(8x)2P a = -  
R3v 

by (3.1) and (3.2). It can be shown that the velocity of an infinitesimal disturb- 
ance would be reduced by a factor 
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which is a very large reduction. Although (2.19) will not hold near the nozzle 
because the parameter aR is not large there, it should be a good approximation 
over most of the distance, so that disturbances produced a t  the nozzle will be 
damped by such a factor that they would play no part in the formation of 
condensations. 

A possible analytical procedure 

In looking for a solution which corresponds to finite growing disturbances, a 
natural suggestion is try a stream function in the form of a Fourier series in x 
with coefficients which are series in the amplitude A(t) ,  that is of the type used 
by Stuart (1960) and Watson (1960, p. 376). This solution does not satisfy initial 
or boundary conditions which one would associate with the experimental con- 
ditions, but it does seem the easiest way to make a start. If the amplitude is 
defined so that its magnitude squared is equal to the (time-average) disturbance 
energy E per unit axial length, one obtains a differential equation for E which, 
to the first order in R and for all large a, has the form 

To be consistent with infinitesimal theory in the limit as E + 0,  go must be given 

by (2.16) for the case N = 1 where the infinitesimal disturbance is damped the 
least. For large a3/R it is found that gm is of order (a3/R)%-” and, for small a 3 / R ,  
g, is of order (a3/R)&+*”. The expansion (3.3) can be expected to be valid as long 
as E is small compared with the ‘threshold ’ energy at which disturbances become 
finite. Since E amounts to an integral of the square of disturbance velocity over 
the cross-section of the critical layer, the order of magnitude of this threshold 
energy is, according to the criterion established in the first part of this section, 
(&)-I (aR)-* = (aR)-% when a < R* and aHR-&(aR)-* = ( c ~ / R ) ~  when a B R), 
and so is R-2 when a - R*. These are just the orders of magnitude of E which make 
all the terms on the right-hand side of (3.3) of the same order. 

A systematic way of calculating the coefficients g ,  follows naturally from the 
assumed form of expansion and the definition of IAI2, but it turns out that the 
only case where the first few coefficients can be worked out without a lengthy 
computing program is the case of least interest, namely the case where a3/R is 
large. The first few terms in the asymptotic expansion of g ,  for large a3/R are 
found to be 

g 1 = - 2 n b )  1 a 3 - f 3  [4-(2) 1 R 4 +49$-1032  R 

which shows that increasing the amplitude of a disturbance of wavelength small 
compared with the radius of the critical layer increases the rate of damping, but 
unfortunately does not tell us very much about finite disturbances when a3/R 
is small or finite. 
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